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Republic of China and No 5, Institute of Melal Research, Academia Sinica, Shenyang 
110015, People's Republic of China 

Retei~ed 25 January 1993 

Abslract Introducing Ihe Dyson-Maleev uansfonnation and the coherent state mak> 
we obtain two partial differential equations of motion with non-linear muplmg in an 
order-parameter-piwing antiferromagnet (OPP-m). Ihese equations are reduced U) a 
single non-linear Schrainger equation by using lhe method of multiple scales mmbined 
with the longwavelength appmimation. ?he sisgle-soliton solution and the wo-soliton 
bund-state solution are obiained wing lhe invene-scattering uansfonnation. These 
results show that soliton-like magnon localization and Wo-magnon b u n d  Sates m the 
F c c - m  ampound CeAs are p i b i e .  Ihe poribilily of obsening a gap wlilon m lhis 
system are also discussed. 

Recently Mikeska and Seiner have reviewed the solitary excitations in one- 
dimensional magnets [I]. Bell er nl [2] examined the nature of two-magnon excitations 
in the alternating bond ferromagnetic s = f spin chain using two different methods: 
a direct analytic approach considered as a generalization of the Bethe msalZ for the 
uniform chain and a scaling approach introduced by Southern el al [3]. Huang ef a1 
[4-7] have published the two-parameter theory of solitons in magnetic systems. Their 
aim is to study the excitations of the alternating antiferromagnetic chain. Soliton-like 
excitations in antiferromagnetic chains with rotational symmetry in spin space with 
respect to the z axis have been discussed. Monte Carlo calculations for the easy- 
plane antiferromagnet have been performed by Gaulin and Collins [8,9]. When the 
planar symmetry of antiferromagnetic chain systems such as ~ M C  is further broken, 
a large variety of soliton-like phenomena are found; this situation is among the 
best investigated soliton phenomenologies both theoretically and experimentally. The 
possibility of finding a pair of bound solitons in ~ M C  was investigated theoretically 
and experimentally. Recent experiments indeed show the existence of such soliton 
pairs below TN [lo]. In m c ,  a vely good description of the experimena could 
be obtained using sineGordon theory for such complicated effects as the cross over 
from longitudinal to transverse solitons at high magnetic field and the breakdown 
of the ballistic movements of solitons upon a very small doping of the chain. In 
m M C ,  a detailed investigation of the single-soliton properties such as the soliton 
shape was not yet possible because of the weakness of the corresponding signal in the 
inelastic neutron spectrum. As in CSNiF, a study of the solitons in the large-density 
limit would be interesting, too. Further experimental, theoretical and computational 
efforts should now aim at the investigation of details of these soliton-bearing systems, 
trying to establish a more quantitative picture. 
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Ferromagnets are described by an order parameter which is a conserved quantiIy 
and the excitation spectrum which is quadratic in the wave vector [le[. Conventional 
antiferromagnets described by the Heisenberg Hamiltonian are characterized by a 
non-conserved order parameter, staggered magnetization, and a spin wave spectrum 
linear in the wave vector [le[. An order-parameter-preserving antiferromagnetic (OPP- 
AFM) Hamiltonian is defined on a bipartite lattice in any dimension and N k l  states 
taken as the exact ground states [U-131. Neutron scattering experiments suggest 
that the FCC-AFM compound CeAs could be. the first example of an OPP-AFM where 
the order parameter is not exactly conserved but is almost conserved [14,15]. The 
OPP-AFM Hamiltonian is unitarily related to that of a ferromagnet and hence has an 
excitation spectrum quadratic in the wave vector [lei. In the presence of an external 
magnetic field, the Hamiltonian of an OPP-AFM is no longer unitarily connected to 
that of the ferromagnet in a magnetic field and the excitation spectrum is expected 
to be different. The effect of the external field is to remove the degeneracy in 
the excitation spectrum and open a gap. Bose deduced an exact expression for 
the excitation spectrum of onedimensional OPP-AFMs in the presence of an external 
magnetic field and generalized this result to three dimensions by considering the 
FCC-AFM compound GAS which has been cited as the Erst example of an OPP-AFM 
[13-151. 

In this letter, we will employ the Dyson-Maleev transformation and the coherent 
state ansae, and investigate the singlesoliton solution and the two-soliton bound-state 
solution in an OPP-AFM by using the method of multiple scales. The aim of this letter 
is to show that the approach developed above is self-consistent and systematic. Our 
approach may be a good method of investigating ferromagnetic and antiferromagnetic 
chains. 

We first employ the won-Maleev 
transformation and the coherent state msae, and obtain two parallel differential 
equations of motion with non-hear coupling. We then use the method of multiple 
scales combined with the long-wavelength approximation, and reduce these equations 
of motion into an envelope-function equation. Next, we investigate the single-soliton 
solution and the two-soliton bound-state solution in an OPP-AFM by using the inverse- 
scattering transformation. Finally we present the discussion. 

The Hamiltonian describing an OPP-AFM in the external magnetic field is given by 

The frame of this letter is as follows. 

[ll-131 

where .Ijj and Aij  are the exchange integrals for spins located at sites i, j of the 
lattice and h is the magnitude of the external magnetic field. 

For antiferromagnets composed of two interpenetrating sublattices A and B, we 
introduce the Dyson-Malew transformation by giving a correspondence between any 
operator A in the Hilbert space of the spin system and an operator A in the boson 
Hilbert space 116,171 

s;+ - (2~) ’ /2 (1  - a t a i / 2 s )  S; = ( 2 ~ ) ” z a f  S: = S -  uta; 

for i E A 
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S,' =(2S)'/2bj+(l-bj+bj/2S) S,' =(2S)1/2bj S z = - S + b + b .  I I 1  

for j E B (Zb) 

and get the bwon Hamiltonian 

where u,(u;) and bj.(bT) are boson annihilation (creation) operators associated with 
the A and B sublattices, S is the magnitude of spin operators and the symbol (ij) 
denotes the sum over nearest-neighbour pairs. 

We employ the coherent state M S Q ~  for the eigenfunction @(f)  of H: 

(4) 

where 10) is the vacuum state of the boson system, and set up the timedependent 
variational principle [ 18,191 

(9 a I at 5 dt (@(f)IS-  - H l Q ( t ) )  = 0. 

The coherent state representation (@(t)lHI@(t)) of H in equation (5) k identical to 
equation (3) with ai(.+), b,(b$) replaced by ai(a;),  pj(p;) for all i and j. Then, 
the variational principle yields the following equations of motion for the values of ai 
and Pi: 

ih(d/dt)ai = ( S J  t h)ai - SA(Pj + Pj-1) - Ja;(IPj12 + lPj-11') 
t + Pi - l )*  - (.l/4s)Aa?(lPj12P; + lPj-l12P~-~) (6a) 

ih(d/dt)Pj = SJPj - S A ( a i  + a i + 1 )  - JPj  (laiI2+ lai+112) 

t 4A(laiI2a; + lai+112ai+l) + AlPjI2(ai + a;+i) 

(6b) 2 - (1/2s)AIPj12(l~i12ai + Iaitll .lit11 

where we consider the system described by the Hamiltonian (1) containing only 
nearest-neighbour interactions and with Jij  = J ,  A,, = A for all spin pairs. 
Although equations (6) have been transformed to c-number equations, it is very 
difficult to solve them because of their non-linearity and discreteness. If we assume 
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that a typical wavelength of the solitons A, > 2d,, where d, is the lattice constant, 
then we may take the continuum approximation 

where q = 2d,/A, is a small dimensionless parameter. In this paper, we only consider 
the case O(q2). Retaining terms in equation (6) to O(q2), we have 

It is very difficult to solve equations (8) exactly because they are non-linear and 
coupled. ’Ib find the solution of slowly varying components of and Q,, we use 
the method of multiple scales [ZO, 211 to reduce equations (8) to another non-linear 
equation which can be solved exactly. This general technique calls in the present 
problem for the introduction of different length scales zj = p j z  and time scales 
fj  = p J t ( p  < 1,j = 0,1,2, .  . .). It is important that in the subsequent discussion 
these new variables are considered to be independent Under this condition, the h t  
spatial and temporal derivatives can be written as 

from which expressions for higher derivatives follow straightforwardly. Similarly, the 
quantities Ql and Q, are written as expansions 

where Qf), Q y )  are functions of all zj and t j  (j = 1, 2, 3, . . .), but these arguments 
will not be written explicitly. Equation (10) is now substituted into equations (8) and 
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terms with equal powers of p are collected. This substitution results in equations for 
Q?, QY) as follows: 

k = l  
0 k = 2  

wk = SJ + 6,h 6, = ( 

S 3 = { '  
k = l  

-1 k = 2  

S 6 = { ;  Wf) 
6.,=(' k = i  k = 1  

0 k=2 k = 2  -1 k = 2  

where k, I = 1, 2; k # I;  j = 1, 2, 3,. . .. We obtain the equations of rYY) and Qg) 
for j = 3 

and demand the coefficient of exp[i(kzo-wt,)] be zero in order to apply perturbation 
theory. The force function A(') will be evolved according to the equation 
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Equation (13) is the non-linear Schrodinger equation which belongs to the completely 
integrable system and can be solved exactly by the inverse-scattering transformation 
"11. 

The single-soliton solution is 

where 
a wave packet travellmg to the right with velocity cg + 2 ~ k .  

= p(z - cgt! and e, c,,, zo, 4" are integration constants. Equations (14) are 

If c is set to be zero, equation (14b) becomes 

n = w - f G W " ( k )  P a )  

at k = 0 or 7r/2d0(cg = 0). For the acoustic branch and the optical branch, we see 
that 

C12,,,(k = 0) = wmUL - idw; ,  > w,, 

R- , , , (k= R / ~ ~ ) = W - ~ ~ - ~ C O W - , ,  I 2 II > w - ~ ~  
1 2 I /  (154 

nmjn(k  = T / 2 d )  = wmk - 2cuwmin < w,,,jn 

0- ,in( k = 0)  = 1 2 If 
min - 5 ~ 0 ~ -  min < w- mi. 

so the soliton frequencies have four values, which enter into the frequency gap of the 
linear dispersion curve of the system and denote the non-linear localized modes of 
the chain. This shows the possibility of observing a gap soliton in an OPP-AFM. Ease 
found that a gap of magnitude 2h opens up in the excitation spectrum at k = 7r/2 
for the one-dimensional chain, and so on for the three-dimensional chain 112,131. 
Our approach provides the same conclusion. 

Using the inverse-scattering transformation, we can obtain the two-soliton bound- 
state solution 

A(') = ( l / p ) ( w f t (  k)/X)'/*{ (c: - c:) / (4  + 4) - 2c,c, [tanh c1 (z - cgt + 2") 
x tanhc l ( r  - c g t - z o )  -sec q ( z -  cgl+ .U) 
x sec c 2 ( z  - cSt - z,) cos i ( c :  - < ) w " ( k ) ] }  

x [[cl sec c l ( z  - cgt + zo) exp{ -i[w - k:w"(k)] t}  

- cZ sec %(z - est - xu) exp{ -i[w - k ~ w " ( k ) t ] } ~  
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where c,, % are integration constants. Equation (16) represents two bound solitons 
which move to the right with velocity cg. If c = 0, equation (16) becomes the 
localized two-soliton bound state in which one sol~ton vibrates around the equilibrium 
position x = -xo with frequency w - cfw"(IC)/2 and the other around r = xu with 
frequency w - 4w"(k) /2 .  They may be called two-magnon bound states of an OPP- 
AFM. If IC = 0 or Xu/2d,, equation (16) represents the two-gap-soliton bound state 
of an OPP-AFM. 

Introducing the Dyson-Maleev transformation and the coherent state m a n ,  
we have investigated the singledoliton solution and the two-soliton bound-state 
solution in an OPP-AFM by using the method of multiple scales combined with 
the long-wavelength approximation. Huang et a1 have published the two-parameter 
theory of solitons in magnetic systems [4-71. Kapor er a1 1221 demonstrated the 
inconsistency of the two-parameter theory. For studying the soliton in ferromagnets 
and antiferromagnets, the approach which has been developed in this letter is self- 
consistent and systematic. 

For the OPP-AFM and other AFMS, we obtain the equations of motion by employing 
the Dyson-Maleev transformation and the coherent state ansa&. Although there are 
more than one equations of motion with non-linear coupling, it is very difficult to 
solve them; the method of multiple scales used here can reduce. these equations to a 
single equation, for example, the non-linear Schrodinger equation in this paper. This 
equation plays an important role in many non-linear phenomena and its properties 
have been widely studied. The single-soliton solution and two-soliton bound-state 
solution are obtained by the inverse-scattering transformation. These results show 
that soliton-like magnon localization and two-magnon bound states in an OPP-AFM 
are possible. The possibility of observing a gap soliton in this system is also discussed. 

We wish m thank Professor Guang-Zhao Zhou, the president of Academia Sinica, 
for his support. This project was also supported by the National Natural Science 
Foundation of China. 
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